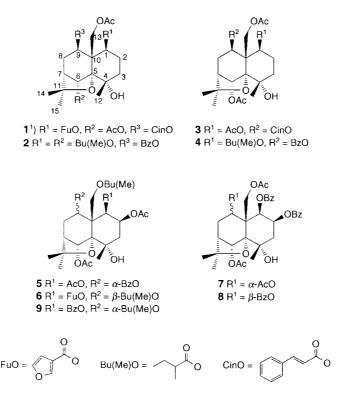
Antitumor Sesquiterpenes from Euonymus nanoides

by Hong Wang^a), Xuan Tian*^b), and Yuanjiang Pan*^a)


 ^a) Department of Chemistry, Zhejiang University, Hangzhou 310027, China (phone and fax: +86-571-87951264; e-mail; cheyjpan@zju.edu.cn)
^b) National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China (e-mail: xuant@lzu.edu.cn)

The isolation, structure elucidation, and antitumor activity of four new sesquiterpene polyol esters, *i.e.*, of 6α ,13-bis(acetyloxy)-9 β -(cinnamoyloxy)-1 β -(furan-3-ylcarbonyl)oxy]-4 α -hydroxy- β -dihydroagarofuran (1), 13-(acetyloxy)-9 β -(benzoyloxy)-4 α -hydroxy-1 β , 6α -bis[(2-methylbutanoyl)oxy]- β -dihydroagarofuran (2), 1 β , 6α ,13-tri(acetyloxy)-9 β -(cinnamoyloxy)-4 α -hydroxy- β -dihydroagarofuran (3), and 6α ,13-bis(acetyloxy)-9 β -(benzoyloxy)-4 α -hydroxy- β -dihydroagarofuran (3), and 6α ,13-bis(acetyloxy)-9 β -(benzoyloxy)-4 α -hydroxy-1 β -[(2-methylbutanoyl)oxy]- β -dihydroagarofuran (4), and of five known sesquiterpene polyol esters 5–9 from the seed oil of *Euonymus nanoides* LOEs. are reported (β -dihydroagarofuran = octa-hydro-2,2,5a,9-tetramethyl-2*H*-3,9a-methano-1-benzoxepin).

Introduction. - Plants of the Celastraceae family comprise ca. 60 genera and 850 species worldwide [1]. Many of them have been used as traditional medicinal plants [2]. (=octahydro-2,2,5a,9-tetramethyl-2H-3,9a-methano-1-benz- β -Dihydroagarofuran oxepin) sesquiterpene polyol esters and alkaloids are biologically active natural products found almost exclusively in species of the *Euonymus* (Celastraceae) genus [3-5]. The common structural features of this class of compounds are a terpene C_{15} skeleton and a β -dihyroagarofuran moiety. Other structural elements can vary considerably. Pharmacological activities described for β -dihydroagarofuran sesquiterpenes include their cytotoxic [6], antitumor-promoting [7], immunosuppressive [8], insecticidal [9], and inset-antifeedant activities [10] and reversing multi-drug resistance in cancer cells [11]. Recently, several β -dihydroagarofuran sesquiterpenes were shown to have anti-HIV activity [12]. As part of our interest in β -dihydroagarofuran sesquiterpene polyol esters with antitumor activity, we investigated the chemical constituents of the seed oil of Euonymus nanoides LOES., which showed antiproliferative activity in the A-549, HL-60, BEL-7402, and P-388 cell-line antitumor screens. We now wish to report the isolation, structure determination, and biological activity of the four new compounds 1-4 and of the five known compounds 5-9 from the seed oil of *E. nanoides*.

Results and Discussion. – Column chromatography (CC), vacuum liquid chromatography (VLC), thin layer chromatography (TLC), and reversed-phase column chromatography (*RP-18*) of the acetone extract of the seed of *E. nanoides* yielded compounds **1**–**9**. The structures of compounds **5**–**9** were determined by spectral data as $1\beta_2\beta_5\beta_{\alpha}$ -tris(acetyloxy)-9 α -(benzoyloxy)-4 α -hydroxy-13-[(2-methylbutanoyl)oxy]- β -dihydroagarofuran¹) (**5**) [13], $2\beta_5\beta_{\alpha}$ -bis(acetyloxy)-1 β -[(furan-3-ylcarbonyl)oxy]-4 α -

¹⁾ Arbitrary numbering (see Formula 1); for systematic names of 1-4, see Exper. Part

hydroxy-9 β ,13-bis-[(2-methylbutanoyl)oxy]- β -dihydroagarofuran¹) (**6**) [14], 6α ,9 α ,13-tris(acetyloxy)-1 β ,2 β -bis(benzoyloxy)-4 α -hydroxy- β -dihydroagarofuran¹) (**7**) [14], 6α ,13-bis(acetyloxy)-1 β ,2 β ,9 β -tris(benzoyloxy)-4 α -hydroxy- β -dihydroagarofuran¹) (**8**) [15], 2β , 6α -bis(acetyloxy)-1 β -(benzoyloxy)-4 α -hydroxy-9 α ,13-bis[(2-methylbutanoyl)-oxy]- β -dihydroagarofuran¹) (**9**) [14]; similarly, the structures of the new compounds **1**–**4** were established.

Compound **1** was isolated as an optically active yellow oil. The HR-MS of **1** exhibited a quasi-molecular-ion peak at m/z 611.2494 ($[M + H]^+$), corresponding to the molecular formula $C_{33}H_{38}O_{11}$. The IR spectrum revealed a characteristic ester absorption at 1732 cm⁻¹ and a free OH absorption at 3432 cm⁻¹. The complete assignments of the ¹H- and ¹³C-NMR data of **1** were successfully carried out by ¹H,¹H COSY, HMQC, and HMBC experiments (*Tables 1* and 2). Thus, compound **1** was identified as 6α ,13-bis(acetyloxy)-9 β -(cinnamoyloxy)-1 β -[(furan-3-ylcarbonyl)oxy]- 4α -hydroxy- β -dihydroagarofuran¹).

The NMR spectra of **1** suggested the presence of two acetate moieties (δ (H) 1.79, 2.20 (2*s*, 2 Me); δ (C) 20.6 (*q*), 21.3 (*q*), 169.7 (*s*), 170.8 (*s*)), a cinnamate function (δ (H) 6.38 (*d*, *J* = 15.6 Hz, PhCH=CH), 7.40 (*m*, 2 H, Ph), 7.47 (*m*, 1 H, Ph), 7.55 (*m*, 2 H, Ph), 7.70 (*d*, *J* = 15.6 Hz, PhCH=CH); δ (C) 117.7 (*d*), 128.8 (2*d*), 129.7 (2*d*), 130.5 (*d*), 134.2 (*s*), 145.8 (*d*), 165.8 (*s*)), a furan-3-carboxylate moiety (δ (H) 6.87 (*d*, *J* = 1.2 Hz, 1 H, CH=CH), 7.41 (*d*, *J* = 1.2 Hz, 1 H, CH=CH), 8.27 (*s*, CH=C); δ (C) 109.7 (*d*), 118.9 (*s*), 144.0 (*d*), 148.4 (*d*), 161.9 (*s*)), and a free OH group (δ (H) 2.71 (*s*)). The ¹H-NMR spectrum (400 MHz, CDCl₃) of **1** showed the presence of three tertiary Me groups at δ 1.34 (*s*, Me(12)), 1.46 (*s*, Me(14)), and 1.49 (*s*, Me(15))¹). The ¹H,¹H

	1	2	3	4
H-C(1)	5.66 $(d, J = 4.0)$	5.57 $(d, J = 4.0)$	5.48 (d, J = 3.2)	5.59 (d, J = 3.6)
$CH_2(2)$	2.45, 2.07 (2m)	2.48, 2.08 (2m)	2.40, 2.01 (2m)	2.46, 2.11 (2m)
$CH_{2}(3)$	1.15, 0.90 (2m)	1.50, 2.01 (2m)	1.20, 0.86 (2m)	1.50, 2.02 (2m)
H-C(6)	5.67 (s)	5.69 (s)	5.58 (s)	6.15 (s)
H-C(7)	2.31 (<i>m</i>)	2.33 (<i>m</i>)	2.21 (<i>m</i>)	2.30(m)
$CH_{2}(8)$	2.31, 2.11 (2m)	2.31, 2.15 (2m)	2.25, 2.11 (2m)	2.32, 2.17 (2m)
H-C(9)	5.28 (d, J = 6.8)	5.34 (d, J = 6.8)	5.21 (d, J = 6.8)	5.34 (d, J = 6.4)
Me(12)	1.34(s)	1.34(s)	1.31(s)	1.33(s)
CH ₂ (13)	5.04, 4.42	4.87, 4.52	4.75, 4.44	4.79, 4.56
	(2d, each J = 12.8)			
Me(14)	1.46 (s)	1.43 (s)	1.43(s)	1.42 (s)
Me(15)	1.49 (s)	1.46(s)	1.46 (s)	1.44(s)

Table 1. ¹*H*-*NMR Data* (400 MHz) of Compounds 1-4 in CDCl₃. $\delta(H)$ in ppm, J in Hz.

Table 2. ¹³C-NMR Data (100 MHz) of Compounds 1-4 in CDCl₃. $\delta(C)$ in ppm.

	1 ^a)	2 ^a)	3 ^a)	4 ^a)
CH(1)	70.1	70.0	70.1	70.0
$CH_{2}(2)$	31.0	31.1	30.9	31.0
$CH_2(3)$	40.5	41.7	40.5	40.5
C(4)	69.5	69.4	69.5	69.4
C(5)	89.7	89.6	89.7	89.8
CH(6)	69.1	70.2	69.0	68.5
CH(7)	43.3	43.4	43.2	43.3
CH ₂ (8)	33.6	33.5	33.4	33.3
CH(9)	69.0	68.3	68.6	68.1
C(10)	50.8	51.2	50.9	51.3
C(11)	83.7	83.8	83.6	83.8
Me(12)	30.0	29.9	29.9	29.9
CH ₂ (13)	66.3	66.2	65.6	65.6
Me(14)	25.3	26.5	25.0	25.1
Me(15)	24.2	24.4	24.2	24.3

COSY plot exhibited signals at δ 5.66 (d, J=4.0 Hz, H-C(1)), 5.67 (s, H-C(6)), and 5.28 (d, J=6.8 Hz, H-C(9)) assigned to CH groups bearing an ester group, while signals at δ 4.42 (d, J = 12.8 Hz, H_a-C(13)) and δ 5.04 (d, J = 12.8 Hz, H_b-C(13)) were assigned to the a CH₂ group bearing an ester group. The ¹³C-NMR spectrum (100 MHz, CDCl₃) of **1** showed 3 Me (δ 24.2, 25.3, and 30.0), 3 CH₂ (δ 31.0, 33.6, and 40.5), 1 OCH₂ (δ 66.3), 1 CH (δ 43.3), 3 OCH (δ 69.0, 69.1, and 70.1), 1 quaternary C-atom (δ 50.8), and 3 quaternary C-atoms attached to an O-atom (δ 69.5, 83.7, and 89.7), whose chemical shifts were very similar to those of reported β dihydroagarofuran sesquiterpene polyol esters [16][17]. The above data suggested that 1 was a β dihydroagarofuran sesquiterpene substituted with two acetyloxy, one (furan-3-ylcarbonyl)oxy, one cinnamoyloxy, and one free OH groups. The ¹H, ¹³C long-range correlation spectrum (HMBC) confirmed the location of the ester groups. Thus, the C=O signals at δ (C) 161.9 and 165.8 were correlated with the signals at δ (H) 5.66 (H-C(1)) and 5.28 (H-C(9)), respectively, revealing that the (furan-3-ylcarbonyl)oxy group was located at C(1) and the cinnamoyloxy group at C(9). Similarly, the acetyloxy groups were positioned at C(6) and C(13) because the C=O signals at $\delta(C)$ 169.7 and 170.6 were correlated with the proton signals of H-C(6) and $CH_2(13)$, respectively. As usually found in this class of compounds, H-C(1) and H-C(6) were axially positioned [9][18]. From the NOESY spectrum of 1, the strong correlation between H-C(1) and H-C(9)indicated also an axial conformation for H-C(9)).

Compound **2** was isolated as an optically active yellow oil that analyzed for $C_{34}H_{48}O_{10}$ by HR-MS (m/z 639.3134 ($[M + Na]^+$)). The IR spectrum revealed a characteristic ester absorption at 1727 cm⁻¹ and a free-OH absorption at 3432 cm⁻¹. In accord with the ¹H- and ¹³C-NMR data (*Tables 1* and 2), compound **2** was elucidated as 13-(acetyloxy)-9 β -(benzoyloxy)-4 α -hydroxy-1 β ,6 α -bis[(2-methylbutanoyl)oxy]- β -dihydroagarofuran¹).

The NMR spectra of **2** suggested the presence of two 2-methylbutanoate moieties (δ (H) 0.55 (t, 2 MeCH₂), 0.80 (d, J = 6.8 Hz, 2 MeCH), 0.92 (m, MeCH₂), 1.20 (m, MeCH₂), 1.90 (m, MeCH₂CH), 2.00 (m, MeCH₂CH); δ (C) 11.2 (q), 11.6 (q), 15.4 (q), 16.5 (q), 25.1 (t), 25.4 (t), 40.6 (d), 40.8 (d), 174.4 (s), 175.2 (s)), an acetate moiety (δ (H) 2.21 (s, Me); δ (C) 21.4 (q), 170.5 (s)), a benzoate function (δ (H) 7.45 (t, 2 H, Ph), 7.57 (t, 1 H, Ph), 8.05 (d, J = 7.6 Hz, 2 H, Ph); δ (C) 128.3 (2d), 129.4 (s), 130.2 (2d), 133.3 (d), 165.4 (s)), and a free OH group (δ (H) 2.68 (s)). The NMR data for the parent ring system was very similar to those of **1**, suggesting that **2** also contains the 1,4,6,9,13-pentasubstituted β -dihydroagarofuran skeleton, and the locations of the protons were confirmed by the ¹H, ¹H COSY plot. As for **1**, the free OH group at C(4) was in equatorial position, and the locations of the ester groups were apparent from the HMBC spectrum, which showed cross-peaks between H–C(9) (δ (H) 5.34, d, J = 6.8 Hz) and the C=O group at δ (C) 170.5 of the acetate function, and between H–C(1) (δ (H) 5.57, d, J = 4.0 Hz) and H–C(6) (δ (H) 5.69, s) and the C=O groups at δ (C) 175.2 and 174.4, respectively, of the two 2-methylbutanoate moieties. In the NOESY of **2**, a strong correlation between H–C(1) and H–C(9) was observed, which further supported that H–C(9) was in axial position.

Compounds **3** and **4** were obtained as yellow oils. The conclusions drawn from the HR-MS, ¹H-NMR, NOESY difference measurement, and ¹³C-NMR of **3** and **4** were confirmed by ¹H, ¹H COSY, HMQC, and HMBC experiments (*Table 1* and 2) and by comparison with data of **1** and **2**. Therefore, compound **3** was elucidated as 1β , 6α ,13-tris(acetyloxy)- 9β -(cinnamoyloxy)- 4α -hydroxy- β -dihydroagarofuran¹) and compound **4** as 6α ,13-bis(acetyloxy)- 9β -(benzoyloxy)- 4α -hydroxy- 1β -[(2-methylbutanoyl)oxy]- β -dihydroagarofuran¹).

Compound **3** analyzed for $C_{30}H_{38}O_{10}$ by HR-MS (*m*/*z* 559.2534 ([*M*+H]⁺). The NMR spectra suggested the presence of three acetate functions (δ (H) 1.79, 2.12, 2.16 (3*s*, 3 Me); δ (C) 20.6 (*q*), 21.1 (*q*), 21.3 (*q*), 169.7 (*s*), 170.2 (*s*), 170.4 (*s*)), a cinnamate moiety (δ (H) 6.35 (*d*, *J* = 16.0 Hz, PhCH=CH), 7.38 (*m*, 2 H, Ph), 7.52 (*m*, 1 H, Ph), 7.55 (*m*, 2 H, Ph), 7.67 (*d*, *J* = 16.0 Hz, PhCH=CH); δ (C) 117.7 (*d*), 128.2 (2*d*), 128.8 (2*d*), 130.6 (*d*), 134.2 (*s*), 145.7 (*d*), 165.8 (*s*)), and a free OH group (δ (H) 2.66 (*s*)). The NMR data for the parent ring system were very similar to those of **1** and **2**, suggesting that **3** also has the 1,4,6,9,13-pentasubstituted- β dihydroagarofuran skeleton, and the locations of the protons were confirmed by the 'H,'H COSY plot. As for **1**, the positions of the ester groups were determined from the HMBC spectrum, which showed cross-peaks between H–C(9) (δ (H) 5.21, *d*, *J* = 6.8 Hz) and the C=O group at δ (C) 165.8 of the cinnamoate moiety, between CH₂(13) (δ (H) 4.44, 4.75 2*d*, each *J* = 12.8 Hz, 2 H), H–C(1) (δ (H) 5.48, *d*, *J* = 3.2 Hz) and H–C(6) (δ (H) 5.58, *s*) and the C=O groups at δ (C) 170.4, 169.7, and 170.2, respectively, of the acetate functions. In the NOESY of **3**, the correlation between H–C(1) and H–C(9) indicated the axial position of H–C(9).

Compound 4 analyzed for $C_{31}H_{42}O_{10}$ by HR-MS (*m*/*z* 575.2860 ([*M* + H]⁺). The NMR spectra suggested the presence of a 2-methylbutanoate group (δ (H) 0.54 (*t*, *Me*CH₂), 0.79 (*d*, *J* = 6.8, *Me*(CH), 0.91 (*m*, 1 H, MeCH₂), 1.18 (*m*, 1 H, MeCH₂), 2.00 (*m*, MeCH₂CH); δ (C) 11.1 (*q*), 15.7 (*q*), 25.3 (*t*), 40.6 (*d*), 174.3 (*s*)), two acetate moieties (δ (H) 2.08, 2.19 (2*s*, 2 Me); δ (C) 21.0 (*q*), 21.2 (*q*), 169.4 (*s*), 170.4 (*s*)), a benzoate group (δ (H) 7.44 (*t*, 2 H, Ph), 7.56 (*t*, 1 H, Ph), 8.03 (*d*, *J* = 7.6 Hz, 2 H, Ph); δ (C) 128.2 (2*d*), 129.3 (*s*), 130.1 (2*d*), 133.5 (*d*), 165.3 (*s*)), and a free OH group (δ (H) 2.68 (*s*)). The assignments of the other ¹H- and ¹³C-NMR signals of **4** were successfully carried out with ¹H, ¹H COSY and HMQC experiments by comparison with data of **1**–3, and the positions of the ester groups were determined from the HMBC spectrum, which showed cross-peaks between H–C(9) (δ (H) 5.34, *d*, *J* = 6.4 Hz) and the C=O group at δ (C) 174.3 of the 2-methylbutanoate function, and between CH₂(13) (δ 4.56, 4.79, 2*d*, each *J* = 12.8 Hz, 2 H), and H–C(6) (δ (H) 6.15, *s*) and the C=O group at

 δ (C) 170.4 and 169.4, respectively, of the two acetate functions. The NOESY of **4** indicated the axial position of H–C(9).

All new and known compounds were tested for *in vitro* antitumor activity against three human-tumor cell lines, *i.e.*, A-549 (lung carcinoma), HL-60 (leukemia neoplasm), BEL-7402 (liver carcinoma), and one mouse-tumor cell line, *i.e.*, P-388 (leukemia neoplasm). IC_{50} Values were determined for compounds 1-9 (*Table 3*). These results show that the compounds are able to inhibit tumoral activity, with IC_{50} values below 100 μ M.

	P-388	HL-60	A-549	BEL-7402
1	64.41	39.72	83.05	46.45
2	72.24	29.30	>100	52.72
3	> 100	91.12	> 100	-
4	68.06	45.59	>100	62.02
5	>100	98.24	-	> 100
6	13.26	8.68	> 100	12.08
7	91.53	54.46	> 100	74.13
8	80.86	17.48	-	41.13
9	71.83	12.05	> 100	6.23
VP-16	5.89	5.08	8.89	13.17

Table 3. in vitro Antitumor Activities (IC_{50} [µM]) of Compounds 1–9 and VP-16.

Experimental Part

General. Column chromatography (CC): silica gel (200–300 mesh; Quingdao of China); reversed-phase, RP-18 short column, 25 × 250 mm, Merck. Vacuum liquid chromatography (VLC): silica gel 60 (35–70 mesh; Merck). TLC: precoated silica gel 60, F 254 plates (Merck); detection by UV light or by heating after spraying with 5% H₂SO₄ in EtOH. Optical rotation: Perkin-Elmer-341 polarimeter. IR: Nicolet-AVATAR-360-FT-IR spectrometer; on KBr disks; in cm⁻¹. UV: Shimadzu-UV-260 spectrometer; in nm. ¹H- and ¹³C-NMR: at 400 and 100 MHz, resp.; Bruker-Avance-400 spectrometer; chemical shifts δ in ppm, coupling constants J in Hz; SiMe₄ as internal standard; 2D NMR experiments included ¹H, ¹H COSY, HMQC, NOESY, DEPT, and HMBC. MS: HP-5988-MS and APEXTMII-Bruker-4.7TAS spectrometer.

Plant Material. The seed of *Euonymus nanoides* LOES. was collected in Luqu country, Gansu province of China in October 1997, and identified by Prof. *J. Zh. Sun* of the Department of Biology, Lanzhou University. A voucher specimen (No. 971001) is deposited at the Department of Biology, Lanzhou University.

Extraction and Isolation. Dried, powdered seeds (1.2 kg) of *E. nanoides* were extracted $3\times$ for 7 d with acetone by percolation at r.t. to give a residue (102.8 g) after evaporation. This residue was separated by VLC and CC with a petroleum ether ($60-90^{\circ}$)/acetone gradient. Compounds **1**, **3**, and **4** were eluted with petroleum ether/acetone 3:1, and **2** with petroleum ether/acetone 5:1. TLC purification of the crude compounds gave **1** (petroleum ether/acetone 3:2; 15.0 mg), **2** (petroleum ether/acetone 5:2; 7.0 mg), **3** (petroleum ether/acetone 2:1; 59.1 mg), and **4** (petroleum ether/acetone; 2:1 33.2 mg). Compounds **5**–**9** were eluted with petroleum ether/acetone 1:1 and purified by CC (*RP-18* MeOH/H₂O $6:1 \rightarrow 2:1$): **5** (5.0 mg), **6** (5.0 mg), **7** (6.7 mg), **8** (4.8 mg), and **9** (6.3 mg).

6a,13-Bis(acetyloxy)-9 β -(cinnamoyloxy)-1 β -[(furan-3-ylcarbonyl)oxy]-4 α -hydroxy- β -dihydroagarofuran (= Furan-3-carboxylic Acid (3R,5R,5a ξ ,68,98,9a ξ ,10R)-10-(Acetyloxy)-5a-[(acetyloxy)methyl]-octahydro-9-hydroxy-2,2,9-trimethyl-2H-3,9a-methano-1-benzoxepin-6-yl Ester; 1): Yellow oil. [a] $_{20}^{20}$ = +8.5 (c = 0.75, CHCl₃). UV (MeOH): 205, 217, 251, 280. IR (KBr): 3432, 2931, 1732, 1638, 1230, 1159, 1023, 877, 721. ¹H- and ¹³C-NMR (CDCl₃): Table 1 and 2. EI-MS: 550 (0.7, [M – AcOH]⁺), 462 (15.0, [M – CinO]⁺), 380 (64.0, [M + H – 2AcO – FuO]⁺), 230 (100). HR-MS: 611.2494 ([M + H]⁺, C₃₃H₃₉O₁⁺; calc. 611.2487).

 $\begin{array}{l} 13-(Acetyloxy)-9\beta-(benzoyloxy)-4a-hydroxy-1\beta,6a-bis[(2-methylbutanoyl)oxy]-\beta-dihydroagarofuran (=2-Methylbutanoic Acid (3R,5R,5aS,6S,9S,9aS,10R)-5a-[(Acetyloxy)methyl]-5-(benzoyloxy)-octahydro-9-hydroxy-2,2,9-trimethyl-2H-3,9a-methano-1-benzoexepin-7,10-diyl Ester;$ **2**): Yellow oil. [<math>a]₂₀²⁰ = +29.0 (c = 0.70, CHCl₃). UV (MeOH): 204, 231, 274. IR (KBr): 3432, 2928, 1727, 1642, 1460, 1238, 1105, 1028, 880, 725. ¹H- and ¹³C-NMR (CDCl₃): Tables 1 and 2. EI-MS: 616 (13.0, M^+), 493 (8.0, [M – H – BzOH]⁺), 394 (32.0, [M – BzO – MeBuO]⁺), 312 (100), 264 (54), 154 (73). HR-MS: 639.3134 ([M + Na]⁺, C₃₄H₄₈O₁₀Na⁺; calc. 639.3140).

 1β ,6a,13-Tris(acetyloxy)-9 β -(cinnamoyloxy)-4a-hydroxy- β -dihydroagarofuran (=(2E)-3-Phenylprop-2enoic Acid (3R,5R,5aS,6S,9S,9aS,10R)-6,10-Bis(acetyloxy)-5a-[(acetyloxy)methyl]-octahydro-9-hydroxy-2,2,9trimethyl-2H-3,9a-methano-1-benzoexepin-5-yl Ester; **3**): Yellow oil. [a]_D²⁰ = +57.0 (c = 5.90, CHCl₃). UV (MeOH): 218, 223, 281. IR (KBr): 3451, 2933, 1742, 1635, 1370, 1233, 1151, 1032, 880, 712. ¹H- and ¹³C-NMR (CDCl₃): Tables 1 and 2. EI-MS: 410 (8.0, [M – CinO]⁺), 290 (15.0, [410 – 2AcOH]⁺), 230 (64.0, [290 – AcOH]⁺), 50 (100). FAB-MS: 559 ([M + H]⁺). HR-MS: 559.2534 ([M + H]⁺, C₃₀H₃₉O₁₀⁺; calc. 559.2538).

6a,13-Bis(acetyloxy)-9 β -(benzoyloxy)-4 α -hydroxy-1 β -[(2-methylbutanoyl)oxy]- β -dihydroagarofuran (=2-Methylbutanoic Acid (3R,5R,5aS,6S,9S,9aS,10R)-10-(Acetyloxy)-5a-[(acetyloxy)methyl]-5-(benzoyloxy)-octahydro-9-hydroxy-2,2,9-trimethyl-2H-3,9a-methano-1-benzoexepin-6-yl Ester; **4**): Yellow oil. [a]_D²⁰ = +45.3 (c = 3.30, CHCl₃). UV (MeOH): 203, 231, 274. IR (KBr): 3427, 2928, 2357, 1740, 1632, 1380, 1236, 1145, 1033, 888, 710. ¹H- and ¹³C-NMR (CDCl₃): Tables 1 and 2. EI-MS: 470 (14.0, [M + 2 H – MeBuO]⁺), 410 (15.0, [470 – AcOH]⁺), 394 (25.0, [M + 2 H – AcO – BzO]⁺), 230 (80), 50 (100). FAB-MS: 575 ([M + H]⁺). HR-MS: 575.2860 ([M + H]⁺, C₃₁H₄₃O₁₀; calc. 575.2851).

Antitumor Assays. Compounds 1-9 were tested for antitumor activity against the following cell lines: P-388, suspension culture of a leukemia neoplasm from a mouse; A-549, monolayer culture of a human-lung carcinoma; HL-60, suspension culture of a leukemia neoplasm from a human; BEL-7402, monolayer culture of a human-liver carcinoma. Cells were maintained in DMEM medium, supplemented with 5% fetal calf serum (FCS), 10-2M sodium hydrogen carbonate and 0.1 g/l penicillin G + 0.1 g/l streptomycin sulfate. The compounds assayed were dissolved in DMSO and tested following the method described by *Bergeron et al.* [19].

H. W. gratefully acknowledges the postdoctoral fellowship awarded by the Zhejiang University, Hangzhou, China, and support by the Lanzhou Medicine Institute, Lanzhou, China.

REFERENCES

- Editorial Commission of Plants Record in China of Chinese Academy of Science, 'Plants of Celastracea Family', in 'Plants Record in China', Science Publisher, Beijing, China, 1999, Vol. 45(3), p. 50.
- [2] R. Bruning, H. Wagner, *Phytochemistry* 1978, 17, 1821.
- [3] Z. Rozsa, A. Perjesi, I. Pelczer, G. Argay, A. Kalman, J. Chem. Soc., Perkin Trans. 1 1989, 1079.
- [4] K. Veda, N. Matayoshi, I. Mori, *Phytochemistry* 1993, 33, 230.
- [5] K. Sugiura, Y. Shizuri, Y. Hirata, K. Yamada, Tetrahedron 1982, 38, 3465.
- [6] Y. H. Kuo, M. L. King, C. F. Chen, C. H. Chen, K. Chen, K. H. Lee, J. Nat. Prod. 1994, 57, 263.
- [7] Y. Takaishi, K. Ujita, H. Tokuda, H. Nishino, A. Iwashima, T. Fujita, Cancer Lett. 1992, 65, 19.
- [8] Y. L. Zheng, Y. Xu, J. F. Lin, Acta Pharm. Sin. 1989, 24, 568.
- [9] W. Wu, M. Wang, J. Zhu, W. Zhou, Z. Hu, Z. Ji, J. Nat. Prod. 2001, 64, 364.
- [10] A. G. Gonzalez, I. A. Jimenez, A. G. Ravelo, J. G. Sazatornil, I. L. Bazzocchi, Tetrahedron 1993, 49, 697.
- [11] S. E. Kim, H. S. Kim, Y. S. Hong, Y. C. Kim, J. J. Lee, J. Nat. Prod. 1999, 62, 697.
- [12] H. Duan, Y. Takaishi, Y. Imakura, Y. Jia, D. Li, L. M. Cosentino, K. H. Lee, J. Nat. Prod. 2000, 63, 357.
- [13] H. Wang, X. Tian, L. Yang, Y. Chen, Chin. Chem. Lett. 2000, 11, 331.
- [14] Z. Rozsa, I. Pelczer, J. Chem. Soc., Perkin Trans. 1 1989, 1089.
- [15] A. Romer, H. Thomas, H. Budzikiewicz, Z. Naturforsch. B 1976, 31, 607.
- [16] H. Wang, L. Yang, X. Tian, Y. Z. Chen, Pharmazie 2001, 56, 889.
- [17] N. Wakabayashi, W. J. Wu, R. M. Waters, R. E. Redfern, G. D. J. Mills, A. B. Demilo, W. R. Lusby, D. Andrzejewski, J. Nat. Prod. 1988, 51, 537.
- [18] H. C. Huang, C. C. Shen, C. F. Chen, Y. C. Wu, Y. H. Kuo, Chem. Pharm. Bull. 2000, 48, 1079.
- [19] R. J. Bergeron, P. F. Cavanaugh, S. J. Kline, R. G. Hughes, G. T. Elliot, C. W. Porter, Biochem. Biophys. Res. Commun. 1984, 121, 848.

Received May 20, 2003